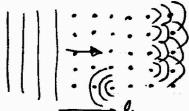
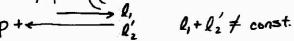
Reflection

one point from earlier discussion:

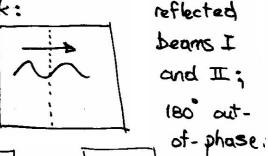


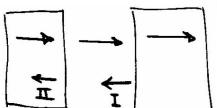
get constructively scattered wave only in forward direction; not in backward direction.

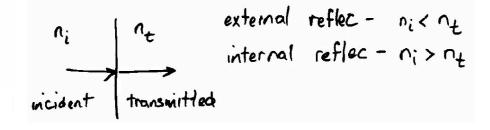


· backward -going wave from one scatterer cancelled by waves from other (nearby) scatterers.

- split a block:



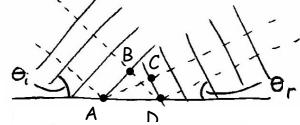




Law of Reflection:

same time for scattered waves to reach reflected

wavefront



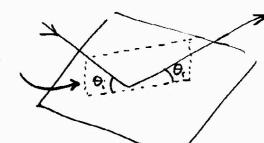
$$\phi = kx - \omega t$$

$$\Rightarrow \frac{80}{800} = \frac{AC}{5000}$$

$$\Rightarrow \Delta X = \frac{\omega}{k} \Delta t = N \Delta t$$

= const.
$$\vdots \quad \theta_i = \theta_c$$

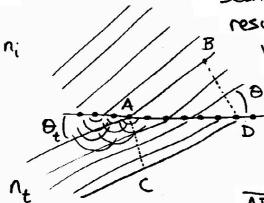
also, have common "plane of incidence"



"specular reflection" "rays" - lines everywhere perpendicular to wavefront (parallel to 3).

Refraction:

ascillators produce scattered waves; resultant has diff. relocity: N= C



$$\frac{1}{D} \Rightarrow \Delta x = N_i \Delta t = \frac{c}{n_i} \Delta t$$

ni AX = const.

AD is common

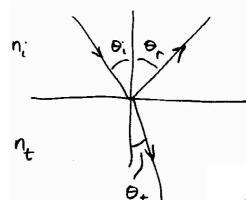
$$\Rightarrow \frac{\overline{BD}}{\sin \theta_i} = \frac{\overline{AC}}{\sin \theta_i}$$

and BD = vist, AC = NEST

$$\Rightarrow \frac{sin\theta_i}{sin\theta_i} = \frac{sin\theta_t}{sin\theta_t}$$
, or $\int_{0}^{\infty} \frac{sin\theta_i}{sin\theta_i} = \frac{sin\theta_t}{sin\theta_t}$

Snell's Law.

· incident, reflected, and transmitted rays all lie in plane-of-incidence:

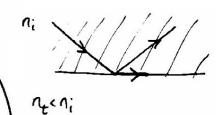


relative $n_{ti} = \frac{n_t}{n_i}$ index of refraction

$$\frac{\sin \Theta_t}{\sin \Theta_i} = \frac{1}{n_{ti}}$$

$$n_{ti} > 1$$
, $\theta_t < \theta_i$
 $n_{ti} < 1$, $\theta_t > \theta_i$

what about when 0,=90°?



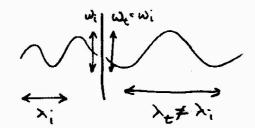
$$\theta_c = \theta_i$$
,

 $n_i \sin \theta_c = n_t$
 $\sin \theta_c = \frac{n_t}{n_i} = n_{ti}$

total internal reflection

· for 0>00, all energy in incident wave is transferred into reflected beam.

important point: w= const in all waves; v= v) varies => > varies.



Prior treatment is example of:

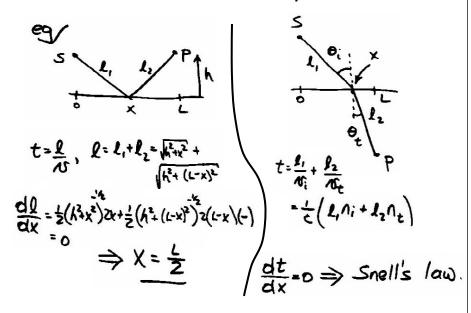
Huygen's Principle: every point on wavefront (eg. in vacuum) is a point source of spherical waves.

problem: produces backward going wave!

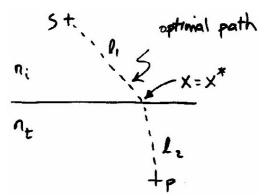
soln: derive rigorously, as fresnel-Kirchoff integral.

Another method for solving this type of problem:

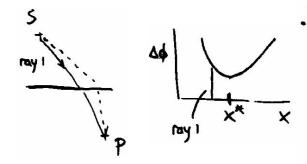
Fermat's Principle: light takes path of least time (actually, stationary with respect to variations) between to points.



origin of Fermat's principle:



- · optical path length OPL = n l = n; l, + n t l2
- · time to reach P, t= OPL
- at particular time, $\Delta \phi_{sp} = \omega \sum_{N} \frac{l}{N}$ $= \frac{\omega}{C} \cdot OPL$
- · say, path is nonaptimal one:



if vary ray 1

path, sop

varies linearly,

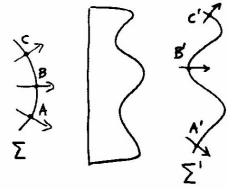
and superposition

> 0 (consider

OPL large).

· only at optimal path does the superposition yield nonzero result.

Light Rays and Wavefronts:



 Σ, Σ' wavefronts, time Δt between them

A, A' corresponding points.

similarly B, B'; C, C'

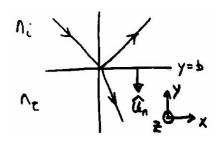
· group of rays which form a wavefront constitute a "normal congruence"

- this normal congruence is maintained after any number of reflections and retractions in isotropic materials.
- > my tracing follow rays thru optical system for fixed st, and form new wavefront.

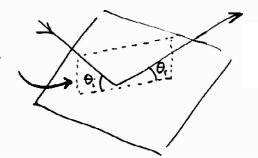
Reflection and Transmission from Maxwell's Egns (Frenel Egns.):

assume $\vec{E}_i = \vec{E}_{oi} \cos(\vec{k}_i \cdot \vec{r} - \omega_i t)$ take $\vec{E}_{oi} = const$ (plane polarized)

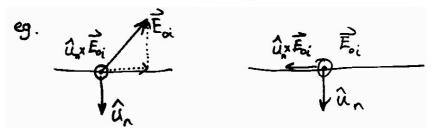
then can write $\vec{E}_r = \vec{E}_{or} \cos(\vec{k}_r \cdot \vec{r} - \omega_r t + \epsilon_r)$ $\vec{E}_t = \vec{E}_{ot} \cos(\vec{k}_t \cdot \vec{r} - \omega_t t + \epsilon_t)$



"plane of incidence



ME => tangential comp. of \(\vec{E} \) continuous across interface \(\vec{\pi} \) \(\vec{\pi} \) continuous



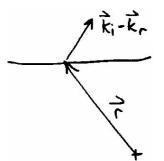
 $\Rightarrow \hat{u}_{n} \times \vec{E}_{0i} \cos(\vec{k}_{i} \cdot \vec{r} - \omega_{t}) + \hat{u}_{n} \times \vec{E}_{n} \cos(\vec{k}_{r} \cdot \vec{r} - \omega_{r} t + \varepsilon_{r})$ $= \hat{u}_{n} \times \vec{E}_{0t} \cos(\vec{k}_{t} \cdot \vec{r} - \omega_{t} t + \varepsilon_{t}) \quad \text{at } y = b$

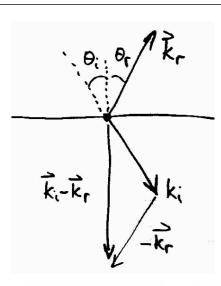
true for all $t \Rightarrow \omega_i = \omega_r = \omega_t = \omega$ true for all (x,b,z)

$$\Rightarrow (\vec{k}_i \cdot \vec{r} - \omega t)_{y=b} = (\vec{k}_r \cdot \vec{r} - \omega t + \varepsilon_R)_{y=b} = (\vec{k}_t \cdot \vec{r} - \omega t + \varepsilon_t)_{y=b}$$
or $(\vec{k}_i \cdot \vec{r})_{y=b} = (\vec{k}_r \cdot \vec{r} + \varepsilon_R)_{y=b} = (\vec{k}_t \cdot \vec{r} + \varepsilon_t)_{y=b}$

$$(\vec{k}_i - \vec{k}_r) \cdot \vec{r} |_{y=b} = \varepsilon_r$$

 $\Rightarrow (\vec{k}_i - \vec{k}_r) \perp to interface$





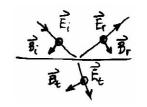
 \Rightarrow k; sine; = kr siner but k; = Kr (same medium) $\Rightarrow |\Theta_i = \Theta_r|$

and $(\vec{k}_i - \vec{k}_t) \cdot \vec{r} \mid_{y=b} = \mathcal{E}_t$ $\Rightarrow \vec{k}_i - \vec{k}_t \perp \text{ to interforce}$ $\Rightarrow k_i \sin \theta_i = k_t \sin \theta_t$

$$U = \frac{\omega}{k} = \frac{c}{n} \Rightarrow \int_{i} \int_{i} \sin \theta_{i} = \int_{i} \int_{i} \sin \theta_{i}$$

Now look at amplitudes:

Case (i): \(\vec{E} \) \(\tau \) to plane of incidence \(\rightarrow \vec{B} \) \(\tau \) \(\tau \) \(\tau \)



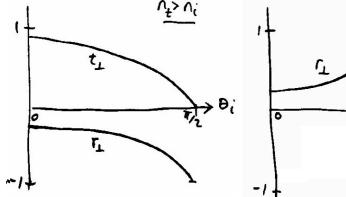
ME \Rightarrow $E_{oi} + E_{of} = E_{ot}$ (*) and, tangential comp. of \overrightarrow{B} is continuous (take $\mu_t^* \mu_i$) - $B_{oi} \cos \theta_i + B_{of} \cos \theta_f = -B_{ot} \cos \theta_t$

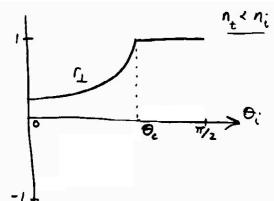
$$B = \frac{E}{\Lambda r} \Rightarrow -E_{i} \cap_{i} \cos \theta_{i} + E_{o} \cap_{i} \cos \theta_{f} = -E_{o} + C_{o} \cos \theta_{f}$$

$$= \frac{En}{C} \quad combine (*) \text{ and } (**) : (\theta_{f} = \theta_{i})$$

$$\left(\frac{E_{or}}{E_{oi}}\right)_{\perp} = \Gamma_{\perp} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$$
 amplitude reflect coeff.

$$\left(\frac{E_{ot}}{E_{oi}}\right)_{\perp} = t_{\perp} = \frac{2n_{i}\cos\theta_{i}}{n_{i}\cos\theta_{i} + n_{t}\cos\theta_{t}}$$
 amplitude trans. coeff.





Oc - critical angle for total int. reflection

n;

n; Sin Oc = Nt

$$Sin\theta_c = \frac{n_c}{n_i} = n_{ci}$$

utcu!

for 0, > 0. Iteratment is not quite right (evanescent waves)

in general,

$$t_{\perp} - r_{\perp} = 1 .$$

Case(ii) } / to plane of incidence

⇒ B ⊥ " " " "

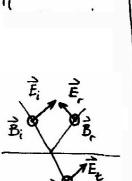
 $ME \Rightarrow E_{oi} \cos \Theta_i - E_{or} \cos \Theta_r = E_{ot} \cos \Theta_t$ $N_i E_{oi} + N_r E_{or} = N_t E_{ot}$

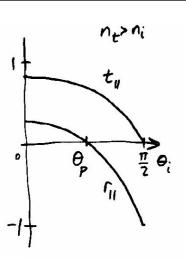
combine: $(\theta_r = \theta_i)$

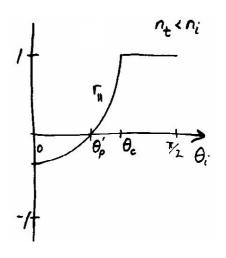
$$\left(\frac{E_{\text{ol}}}{E_{\text{ol}}}\right)_{\text{II}} \equiv \Gamma_{\text{II}} = \frac{n_{\text{t}} \cos \theta_{\text{t}} - n_{\text{t}} \cos \theta_{\text{t}}}{n_{\text{t}} \cos \theta_{\text{t}} + n_{\text{t}} \cos \theta_{\text{t}}}$$

$$\left(\frac{E_{ot}}{E_{oi}}\right)_{II} = t_{II} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_i \cos \theta_i}$$

(r's and t's can be further simplified using Snell's law).



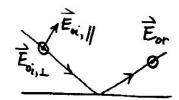




note: $t_{11} - \Gamma_{11} \neq 1$, but $t_{11} + \Gamma_{11} = 1$ at normal incidence again, for $\theta > \theta_c$ treatment not quite right.

look at Op "Brewster's angle"

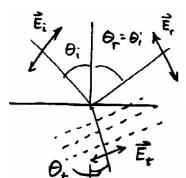
mixed polanized incident:



output only _ polarization

why?

oscillators don't emit L to their oscillation direction:



if $\theta_t + \theta_r = \frac{\pi}{2}$ then $E_r = 0$.

nising, = nt sinet